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Abstract: A model was developed to understand the aggregation process of  the particles in 

electrorheological (ER)  fluids under the action of  an applied electric f ield.  By establishing 

a generalized virtual work principle based on the consideration that the released 

electromagnetic energy accompanying the growth of  the chain should equal to the dissipated 

energy related with friction resistance of the viscous fluid in the chain formation, the 

governing chfferenfial equation of the chain growth was established. Based on this energy 

model, the velocity of the chain forming, and the response time of  ER fluid can be 

predicted. The present model can also predict the effect of  the temperature and some 

microstructural parameters, such as the dielectric constants and concentration o f  the 

particles, e t c . ,  on the response of an ER system. 
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Introduction 

An electrorheological (ER) fluid consists of a suspension of fine particles in a liquid of low 

dielectric constant and low viscosity. Its apparent viscosity increases dramatically in the presence 

of an applied electric field. If the electric field exceeds a critical value, the ER fluid turns into a 

solid whose yield stress increases as the field is further strengthened. This phenomenon is 

completely reversible. Upon electric field cutoff, the system almost immediately resumes its 

original liquid state. The time scale for the transition is of the order of millisecond. The 

phenomenon of electrorheology was first discovered by Winslow (1949) [i] ,  and is sometimes 

termed as the "Winslow effect." Because of their fast response and low power requirements, ER 

fluids provide the possibility of rapid-response coupling between mechanical devices and electronic 

control. These properties also make ER fluid attractive for many futuristic technologies. To 

predict their response, a crucial problem is to gain a clear understanding of the physical 

mechanism of the ER phenomenon. Consider a system of small particles of dielectric constant e p 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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suspended in a fluid of dielectric constant e f, e p > e f.  The whole system is placed between two 

parallel plates, upon which a voltage is applied to produce an electric field. When the dielectric 

particles have a density close to the liquid density, the buoyant force neutralizes the gravity and 

creates a low-gravity environment. Before applying the electric field, the thermal motion makes 

particles randomly distributed in the space and forms a uniform liquid suspension. As the electric 

field is applied, the particles obtain an induced dipole moment.  When the applied electric field 

increases, the depolarized particles will begin to aggregate one another, and form a chain 

structure along the electric field. Due to the formation of these chains, the shear strength and 

viscosity of ER fluid increase by orders. Therefore, the formation of chains underlies all 

phenomena of ER fluid. 

Many researches have been carried out to understand the mechanism of the structure 

formation. Tao e t  a l .  (1991) [2] published a series of works about the structure formation in ER 

fluid under the action of the external field based on phase transition theory from a disordered state 

to an ordered state. Klingenberg e t  a l .  (1989)[3] carried out two~ and three-dimensional 

molecular-dynamics-like simulation on the structure formation in electrorheological suspensions. 

Recently much effort is being devoted to the synthesis of  new ER fluids possessing desirable 

rheological, electrical, chemical, and tribological properties. Receiving particular attention are 

those materials that exhibit large yield stress and short response time of the field-induced structure 

change. Detailed descriptions of the research works on the mechanism can be found in the review 

paper by Parthasarathy and Klingenberg (1996) N~ . 

To use ER fluid successfully in engineering and develop some high performance materials, it 

is important to understand the mechanism by which the chain structure is formed. From our 

knowledge of ER fluid, at present stage, the molecular-dynamics-like simulation is widely used 

to simulate the motion and aggregation of the particles. But the analysis is restricted by the 

limitation of the numerical calculation. In this paper, a generalized virtual work principle was 

established for chain formation process based on thermodynamics analysis. By assuming the 

forming chain as a prolate spheroid, its aspect ratio was selected as the generalized degree of 

freedom of the system. Then the governing differential equation of the chain growth was 

established. Based on this energy model, the velocity of the chain forming, and the response time 

of ER fluid can be predicted. 

1' General ized Principle  of Virtual Work for t h e  C h a i n  Growth Process 

As discussed z~ovc,  trader a given temperature, when a strong electric field is applied on the 

electrodes, the polm' iz~ particles will aggregate to form chains along the direction of the applied 

electric field. With the increases of the electric field, more particles will aggregate on the chain to 

form thick column. Due to the image effect of the electrodes, the column is usually wide in the 

two ends, whereas comparatively thin in the middle. But in this paper, we only consider the 

initial stage of the chain formation without considering the later aggregation and thickening 

process. Therefore, only one chain is considered here and it will grow only along the direction of 

applied electric field. To simplify the analysis, the single chain is assumed to take the shape of a 

prolate spheroid with the semi-axes as aj and a 3 , where a I is the radius of the particles. The 

kinetics of the chain formation is determined by the change of a 3 , or the aspect ratio/3 = a 3 / a  1 , 
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with respect to time t .  We consider the system which consists of all the polarized particles to form 

a chain. In the chain formation process, the temperature of the huge environment remains 

constant. Therefore the temperature of the system can be also considered to remain constant. In 

fact, the dissipated energy due to the friction force in the chain formation process will be 

converted into heat and transferred back to the environment. 

The virtual work done by the system corresponding to the infinitesimal change ~/3 should 

include those done by the electric field, magnetic field, viscous friction force and the inertia force 

if the applied mechanical load is zero. Therefore, the generalized principle of the virtual work can 

be expressed in the following form: 

~W~ + ~Wm + ~Wf + ~Wi - T~S = O, (1) 

where ~ We, ~ Win, ~ Wf and ~ Wi are the virtual words done by the system through the electric, 

magnetic, viscous friction and inertia forces, respectively. ~S is the change of the system entropy 

due to the change ~/3. In what follows, we will derive the terms in Eq. (1 )  one by one, and 

establish the evaluation equation of/3.  

2 The  V i r t u a l  W o r k  D o n e  by  the  Electr ic  F ie ld  a n d  Magnetic F i e l d  

Consider that a suspension of fine dielectric particles in a liquid of low dielectric constants is 

put between two. parallel plates, when the 

applied electric field is zero or very small, the 

thermal motion makes the particles randomly 

distributed in the space and form a uniform 

suspension (F ig .  1 ) .  As the electric field 

increases, the particles obtain an induced 

dipole moment. Thus the system consisting of 

those particles to form a chain will have some 

amount of electrostatic energy before 

aggregation. When the particles aggregate to 

form a chain, the electrostatic energy of the 

system will change. Since it is a dynamic 

process of the chain formation, it will also 

induce a magnetic field around it. Therefore 

the system will have some amount of magnetic 

energy in the chain formation process. The 

work done by the electric and magnetic field of 

the system should equal to the decrease of the 

electromagnetic energy of the system. 

Therefore if we can derive the change of 

electromagnetic energy of the system, we 

obtain the work done by the electric and 

magnetic field. 

2 .1  
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Fig. 1 Schema of the chain formation process of 

the particles in ER fluid under the action 

of an applied electric field 

The electromagnetic energy of spherical par t i c l e s  

Before aggregation, the system contains N spherical particles in ER fluid, the expression of 
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electromagnetic energy for the system can be derived. First consider a single spherical polarized 

particle with polarization P~ in a homogeneous dielectric material under the action of the external 

electric field. The internal electromagnetic energy can be expressed as 

f =  l f f f v E . D d  v = -21fffv (Ee +AE) ' (De  +AD)dv = 

where E " ,  D" are the appfied electric field and corresponding electric displacement, AE ,  AD are 

the induced electric field and displacement due to the polarization prescribed in the particle P , .  

The interaction energy caused by introducing a single particle is 

Af =-  f f f a  E~p~idv- --21fff o AEip~idv" (3) 

For constant polarization and spherical inclusion, AE is given by AE _- ( -  pB/6e)k. For the 

system containing N polarized particles, the polarization can be expressed in the form as P~ = 

~ p ~ H ( O i ) ,  where H(Oi )  is the Heaviside function defined on the i-th particle. Without 

considering the interaction between the particles, the total interaction energy is obtained as 

f f f  -21fff a AEI(P')P•dv" (4) AF =-  aE~P~dv - 

As assumed in this paper that the chain is formed by attracting particles to aggregate one by one 

along the direction of the applied field, the number of the separated particles in the system will 

decrease with time. Therefore, the change rate of the electromagnetic energy with the reduction of 

separated particles is given by 

2.2 The electromagnetic energy of the spheroidal cha in  

~:~ ~)  ~]~ ~ ~ ~q~ ~ In the chain forming process, part of the 

@@@@@@@@r@ 

Fig. 2 Schema of the spheroidal chain formed 
by the polarized particles under the 
action of an applied electric field 

electromagnetic energy will disappear with the 

reduction of separated particles. At the same 

time, part of the electromagnetic energy will 

appear with the aggregation of particles. Next 

we consider the change rate of the 

electromagnetic energy accompanying the 

growth of the chain. In the finite element V of 

the ER fluid there is a chain of polarized 

particles ( Fig .2 ) .  The electromagnetic energy 

of the chain under the action of the applied 

field is given by 

1 rr f  ( 
u :  ~ - J J Jv  E . D + H . B ) d v ,  (6) 

where V is the total volume of the ER material element. The change rate of the energy is given by 
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d[ l f i r  ( E . D +  H-B)dv]  = b 
= v 

f~fv  [ -  E ' J -  V ' ( E  x t t ) ]dv .  (7) 

In deriving Eq. (7 ) ,  we have used the Maxwell equation to replace the time-derivative factors in 

the integrand. Eq. (7) is known as Poynting' s theorem. S = g x H ,  where S is called the 
Poynling vector, which is identified as the energy flux, or energy flow rate per unit area. 

2 .3  The  i n p u t  e l ec t romagne t i c  e n e r g y  t h r o u g h  the  b o u n d a r y  

The rate of the energy input by the outside environment through the boundary U is given by 

W = - f f r S ' d s "  (8) 

2 .4  The  work  done  by  the  e lec t r ic  a n d  magne t i c  f i e ld  

The change rate of the electromagnetic energy of the system is given by 

c:  + -- 'qL 

f f  {p~E; /~( , ) -  [Si]n,}ds + /xU, (9) 
J J  s 

where the integration is carded out on the surface of the chain. As side before, the work done by 

the electric and magnetic field of the system should equal to the decrease of the electromagnetic 

energy of the system. Therefore 

W~ + Wm = -  ( ; .  ( 1 0 )  

In fact, G represents the driving force for the growth of the chain. If G > O, that means the 

positive work was done on the system through the electric and magnetic field accompanying the 

growth of the chain. With the aid of the expressions of the electric and magnetic field both inside 

and outside the ellipsoidal inclusion, the change rate of the energy is given by 

- e~ dt v. 6 8~ 4-~% v-~t 21fLt)ds'  (11) 

1 ~ 
where 0 ( 2 )  = ~ - [ / ( 2 )  - x~xjN(A)],  x,XdN(2) = x 2 l l ( A)  + x ; I2 (A)  + x.~ls(A),  

and 

I 4~ta 1 a3 - 
/ (2)  = ~/f12 _~areeoshb, 

- -  & 

[ I 3 ( 2 )  = 4zcfl(arccoshb - cllb)l(fl2 _ 1)3/2, (12) 

L[1 (2 )  = 12(2) = 27rfl(bd - arecoshb)/(f l  2 - 1) 3/2 , 

where b = ~ / (a3  + 2 ) / ( a  2 + ~),  ~l = ~/(a~ - a~)/(a 1 + 2 ) ,  and A is the largest positive 

root of the equation 
"~ 2 "~ xi x2 x~ 

+ + 1. (13) 

When x is inside the inclusion, A = 0. 

The energy release rate can also be expressed in'the form of 
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18 
= g -ff~, (14) 

where g = 3GIO 8 is the energy change per unit increase of the aspect ratio of the chain, and 

3_~ dN (15) 
St  - dt  ' 

where d N / d t  is the change rate of the  particles numbers aggregating on the chain. From 

Eq. (10 ) ,  one can fred 

6W~ +OWm = - g6f l ,  (16) 

where 

P: [ 1 13(fl) l P: l f ;1.  0 2 ~ O R  g = - -  -~ds.  (17) efv ,  6 - ~-~ 4~tef c~ a t  2 

By considering that �9 is only the function of 8 ,  Eq. (17) can be rewrilXen in the form as 

where 

p]  [ 1 6(8)] 
g = ~f "l 6 8~ 

P~ 1 [(d_~/2 

a ( 8 ) d2--~ fl 
dt  2 

3 2 0  OR a- ll 
O f  + d t Z J J s - -  

+ B(8)( c(8)  
dt]  + 

0 ~  OR ] 
a 8  = 

c(8) [1 I3(8)1 
= ~f " t 6 -  87t 1" 

(18) 

(19) 

(20) 

(21) 

T h e  VirV_j~! W o r k  D o n e  b y  t h e  I n e r t i a  F o r c e  

Usually in computer simulations, the inertia force was neglected. But if the mass density of 

particles has great effect on kinetics of the chain formation, the inertia force should be included in 

the analysis. In the following, we propose two simple models for the motion of particles, and 

derive the virtual work done by the inertia force. 

3 .1)  The particle moves  in a constant acceleration toward the chain 
When an initially static particle is attracted to attach on the chain, the particle should move 

with acceleration. This acceleration can be considered to produce D '  Alembert inertia force, 

which should do some work when the particle is moving. In this part, we will derive the 

expression for the work done by the inertia force. To simplify our analysis, we assume that the 

particle will move in a constant acceleration a toward the chain. The average distance between the 

particle and the chain is Ax,  which can be determined if one knows the concentration of particles. 

If the velocity of the chain growth is denoted as/9, the time for one particle to aggregate on the 

chain is given by 
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t = l / f t .  (22) 

Since the attachment of one particle on the chain corresponds to that the aspect ratio/3 increases by 

one unit. Therefore, the constant acceleration can be determined through the following equation: 

A x =  = t -  ~ . (23) 

In derivation of Eq. (23) ,  we used Eq. (22) .  Thus 

a = 2&x/3"-. (24) 

Since the mass density per unit aspect ratio is the mass of  one particle, the inertia force acting on 

an infinitesimal element ~/3 is 

f i  = rn~fla = 2 A x  flz rn~fl,  (25) 

where m is the mass of one particle. The inertia force is in the direction opposite to the 

acceleration, therefore, the work done by the system through the inertia force is given by 

Wi I = f i A x  = 2 A x z  ~ z rn~/3. (26) 

That means that the inertia force does the negative work on the system. 

3 .2)  The  ve loc i ty  of the par t i c le  will  r e d u c e  to zero when it aggrega te s  on the chain 
Initially the particle keeps static. Thus if the initial and final velocity of the particle are all 

zero as assumed, the kinetic energy will keep unchanged, therefore the work of the inertia force 

will keep zero as follows: 

~Wi  lI = f i d x  = m~  f w d t  = m~  v d v  = 
0 

l m ~ / 3 [ v 2 ( t )  - vZ(0)] = 0. (27) 
2 

4 T h e  VirtuAl Work D o n e  by  the  Fr ic t ion  Force  of  V i scous  F l u i d  

When the particles move to aggregate on the chain, the fluid will induce hydrodynamic drag 

resistance on the particle. If the velocity of the particle is denoted as v,  which is not too high, 

i . e . ,  the Reynolds number Re ~ 0 .2 ,  the hydrodynamic resistance on the particle is 

approximately given by the Stokes resistance 

f v  = 6~r loa l  v , (28) 

where 7]o is the viscosity of the dispersing fluid, and a l is the radius of the particle. For 

infinitesimal element ~/3, the drag force is fv ~/3- Therefore the work done by the friction force to 

cross the distance Ax is given as follows: 

~ W f  = f i ~ / 3 d x  = f v ~ f l v d t  = 67tT/0ala~'~ . (29) 
0 

Substituting Eqs. (22) and (24) into Exl. (29) yieMs 

Wf = 8~t 70 al  Ax~-/~/3. (30) 

5 The Basic Dif ferent ia l  Equat ion  of the Chain Formation 

Substitution of Eqs. ( 1 6 ) ,  (26) and (30) into the expression of virtual work, F_x]. (1) gives 

the basic differential equation of chain formation 
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(d~) 2 d~ dS A(fl) d2fl + [B( f l )  - 2mAx21 - ~  - ~  -~fl ~t  2 -8r~rloaiAx 2 + T + C(f l )  = 0. (31) 

Equation (31 ) i s  the governing equation of the chain growth including the effect of inertia force 

based on our energy model, The form of Eq. (31 ) is similar to that used in computer simulation 

for one particle, where the term containing the temperature and entropy is similar to the Brownian 

force. 

The parameter cf given by Eq. (18) in the expressions of A ( f l )  and B ( f l )  as shown in 

Eqs.(19) and (20) represents the propagation speed of eleclromagnetic wave in the fluid. It 

should be much larger than the speed of the chain growth df l /d t ,  and when the chain formation 

approaches a stationary state, the first term in Eq. (31)  can also be neglected. Therefore 

Eq. (31 ) becomes 

2 m A x  2 + 8~7]031Ax2 d_~ T dS dt - ~ - C( f l )  = 0. (32) 

The solution of Eq. (32) for the velocity of the chain formation is given by 

dfl 1 { 4 ( 8 ~ 0 3 1 A x 2 )  2 + 8 m A x 2 [ C ( f l )  + TdS/dfl] - 8~t~/0aiAx 2} (33) dt - 4raAx 2 

in which we omit one solution which gives the negative velocity. 

From Eq. (33 ) ,  it is very clear that the velocity of the chain formation depends on the 

applied electric field, the dielectric constants of particles and fluid, which are contained in the 

expression of C (f l ) ,  the particle concentration, size, and mass density. 

If we adopt the second model of particle's motion by substituting Eqs. (16) ,  (27) and (30) 

into the expression of virtual work, Eq. (1) gives the basic differential equation of chain 

formation 

A( f l )  d2fl B( f l )  - 8nTIoa, Ax 2 ~ + T-d- ~ + C(f l )  O. (34) 

Using the same reasoning as obtaining Eq. (32),  one can derive 

dfl dS 
8rw0aiAx2 ~ - - 7~-flfl - C( f l )  = 0. (35) 

The velocity is given by 

dfl 1 [ dS ] 
= 87tr/0alAx,_[ C(f l )  + T ~ f l ] .  (36) dt 

C(f l )  given by Eq. (21)  increases from zero to p~va/6ef when fl changes from 1 to 

infinity. The velocity given by Eq. (36) versus the aspect ratio fl is shown in Fig. 3 where, for 

simplicity, we neglect the heat transfer between the system and its environment. From the figure, 

it is very clear that the velocity of the chain formation approaches its maximum steady value very 

soon. From Eqs. (33) and (36) ,  the maximumvelocity of the chain formation is given by the 

following equations, respectively 

(dd_~t) 1 {~/(87r~oalAx2)2 * 8 m A x 2 [ p : v j 6 e f +  TdS/dfl] max 1 -- 4 m A x  2 

8~7/o 31Ax 2 }, (37) 
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: 
~ -  ~ z  - 87t~0alAx ~'t 6r + T~--~ . (38) 

The time needed for the chain to cross the distance between the electrodes is also given by 

Eq. ( 36 ) ,  which is shown in F ig .4 ,  where t "  ~ e f A x 2 / (  ~" = p,  v,  ) .  From Figs. 3 and 4, one can 

find that the chain grows in a uniform speed soon after it starts to propagate. 

�9 .~ ~. O. 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

z ~ ~176 V 
E- 0 I  ~ . _ _  . 
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< 

Fig,3 The velocity of the chain growth t" dfl/dt, 

where t" = f ie fAx2/(p2,  v~) ,  versus 

the aspect ratio of the chain 

1001-, ............................ 

50 

0 
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Fig.4 The formation time t / t "  of a 

whole chain versus the distance 

hetween the electrodes, where 

t" = ~r ~.) 

If we defme the critical field for the phase transition as the minimum value of the applied electric 

field to induce the chain formation, this electric field can be determined by the following 

condition: 

dS 
C( f l )  + T~--~ = 0.  (39) 

, one can determine the lower bound of the electric field that induces the transition W h e n / ~  ~ oo 

happening �9 

E~ ~ (40) 

where R = - d S / d f l .  In deriving Eq. ( 4 0 ) ,  we used E q . ( 3 1 ) .  The form of Eq. (40)  is very 

similar to that obtained by Tao et a l .  [2] . Based on this model, one need first to know the 

entropy change accompanying the chain formation process to incorporate the effect of 

temperature 

6 Comparison with Experimental Results and the Molecular -Dynamics-  
L inke  Simulation Results 

Based on our model, the response time, which is defined as the time to form the fn'st 

bridging chain over the electrodes, can be derived through the integration of Eq. (36) as follows: 

= dfl ,  (41 )  
0 
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where L is the gap between the electrodes. By neglecting the heat transfer during the chain 

formation process, and substituting Eq. (21) into Eq. ( 4 1 ) ,  one obtains 

ef [u- ,  [ 1 1 3 (3 ) ]  -1 
r = 8~r/0alAX2 -T  --- Psv , J0  6 ~-~ I d3 .  (42) 

Since the electric dipole moment density p,  is in proportion to the applied electric field E" , the 

response time is scale as 1 / (E~)  z . Hence, such prediction seems in coincidence with the 

simulation result and experimental results. The dependence of the response time on the volume 

concentration of particles is reflected through the parameter Ax,  which is the average distance for 

a particle to move to aggregate on the chain. How the distance Ax depending on the volume 

concentration of particles i s  a complicated geometry problem, since the particles are randomly 

distributed in space. Consider that the chain will be formed along the line oo ' ,  which connects the 

upper and lower surfaces of electrodes. If the number of particles in volume v is assumed to 

follow Poisson distribution, ~i. e . ,  the probability that the volume v contains k particles is 

given by 

Pr ( i k ) ( nv ) k 
= - - e -  .v ( 4 3 )  

k !  

where n is the average number of particles in unit volume. N e x t ' w e  try to derive the average 

nearest distance between the particles and the chain position oo ' .  One can consider a cylindrical 

region with radius r surrounding oo ' .  The probability that there is no particle in the cylindrical 

region is given by 

P r ( i  = 0) = e -~v = e -~L'2 (44) 

The probability density function of particle 's  position is 2rcnLr. Hence, the probability density 

function of the nearest distance between the particles and oo' is the conditional probability density 

function given that there is no particle in the cylindrical region with radius r ,  therefore 

f (  r)  = 27rnLre -~"z / (45) 

The average distance Ax is given by the integration 

fo ;o Ax  = r f ( r )  = 27tnL r~ -~L~ dr  = 

27~nZ;o r2e-:xnLr~-dr = (~nz)-l/2/-~(_~). (46) 

The average number of the particles in unit volume is related with the volume concentration of 

particles as follows: 

n = P / v , ,  

where @ is the volume concentration of particles, and v, 

Substitution of Eq. (47) into (46) gives 

(47) 

is the average volume for one particle. 

Ax  = ( ~ L ) - l 1 2 F ( 3 ) ( ~ )  112 (48) 

By substituting Eq. (48) into the expression for response time, Eq. ( 4 2 ) ,  one can find that the 

response time scales as r oca/r-1 . Klingenberg et a l .  (1993)  [4] carried out the experimental 

measurement on the response time. They found that the data had a considerable scatter, and the 
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response time varied as r oca/t-2's , while their computer simulation gave r oca/t-3"2 . Exact 

measurement on the response time is a challenge at present stage. 

7 Concluding Remarks 

At last, we would like to summarize the work presented in this paper. 

1) In this paper, a generalized principle of virtual work for the chain formation process in 

ER fluid is developed based on thermodynamics analysis. Based on the energy approach, the 

governing differential equation for the chain formation in ER fluid is derived. The advantage of 

such kind of energy approach over classic molecular-dynamics-like simulation method is quite 

similar to the advantage of Langrange analytical mechanics over Newton me.chanics. Using the 

energy approach, one can consider a few numbers of entities as generalized coordinates to 

represent the degrees of freedom of the system. In this paper, we only use the aspect ratio/3 of 

the chain as the generalized coordinate. The number of generalized coordinates is of course likely 

to be much less than the number of particles. In fact, as a specific case, if one denotes three 

degrees of freedom for each particle, the dynamic governing differential equations for computer 

simulation can also be obtained through such an energy approach. 

2) The velocity of the chain formation is obtained explicitly. It is found that the chain grows 

in a uniform speed soon after it starts to propagate. 

3) The response time of an ER system is also obtained and eompared with experimental and 

numerical results. 

4) Even though the energy approach developed in this paper is quite general for more 

complicated ER structures, the assumptions adopted in this investigation, such as neglecting the 

image effect of the electrodes and taking the prolate spheroid shape of the chain will limit the 

application of the results. To deal with more complicated ER structures, on can adopt more 

generalized coordinates to represent the degrees of freedom of the system instead of only using the 

aspect ratio/~ of the chain. 
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